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ABSTRACT 
 
Focal cortical dysplasia (FCD) is an important cause of 
pharmacoresistant epilepsy.  Small FCD lesions are difficult 
to distinguish from non-lesional cortex and remain often 
overlooked on radiological MRI inspection.  This paper 
presents a method to detect small FCD lesions on T1-MRI 
relying on surface-based features: cortical thickness, 
gradient magnitude at the white-matter / grey-matter 
interface, cortical signal intensity, curvature and depth of 
inner-cortical surface.  These features best describe the 
visual and morphometric characteristics of small FCD, and 
allow differentiating it from healthy tissues.  The automatic 
detection was performed by a neural-network bagging 
trained on manual labels.  The method was tested on 19 
patients with small FCD and identified the lesion in 89% 
(17/19) of cases.  Cluster analysis demonstrated that the 
lesional cluster was the largest in 76% (13/17) of identified 
cases.  This new approach may assist the presurgical 
evaluation of patients with intractable epilepsy, especially 
those with “MRI-negative” epilepsy. 

Index Terms— Magnetic resonance imaging, Nervous 
system, Biomedical signal detection, Biomedical image 
processing, Neural network applications. 

 
 

1. INTRODUCTION 
 
Malformations of cortical development (MCD) have been 
increasingly recognized as an important cause of 
pharmacoresistant epilepsy.  Focal cortical dysplasia (FCD) 
[1], a malformation due to abnormal neuroglial 
proliferation, is the most frequent MCD in patients with 
intractable extra-temporal epilepsy [2].  Epilepsy surgery, 
consisting in the removal of the FCD lesion, is an effective 
treatment for these patients and magnetic resonance images 
(MRI) plays a pivotal role in presurgical evaluation [3]. 

Image analysis techniques were previously developed 
to detect FCD automatically on MRI, relying on different 
types of voxel-wise analysis [4-6].  In particular, we 
proposed computational models of FCD characteristics [7] 
and a Bayesian classifier for lesion detection [4].  While 

these approaches successfully identified FCD in a majority 
of patients, most of the lesions included in these studies 
were detected on routine radiological evaluation.  On the 
other hand, the detection of small FCD lesions, which are 
overlooked in more than 80% of cases [8], is a much more 
difficult task and has never been addressed. 

This paper presents a new method for detecting small 
FCD lesions on T1-weighted MRI, relying on surface-based 
MR features of FCD.  To increase the sensitivity of the 
automated method, we developed vertex-based analysis by 
projecting voxel-wise features onto the cortical surface. 
 

2. METHODS 
 
2.1. Image acquisition and preprocessing 
 
3D MR images were acquired on a 1.5T scanner using a T1-
fast field echo sequence (TR=18, TE=10, 1 acquisition 
average pulse sequence, flip angle=30°, matrix 
size=256×256, FOV=256, thickness=1mm) with an 
isotropic voxel size of 1mm3.  All images underwent 
automated correction for intensity non-uniformity and 
intensity standardization [9], automatic registration into 
stereotaxic space [10], automatic tissue classification [11] 
and brain extraction [12]. 
 
2.2. FCD features extraction 
 
To detect the lesion, five features were extracted from the 
MR images.  These features correspond to visual 
characteristics – cortical thickening, a blurred transition 
between gray matter (GM) and white matter (WM), and 
hyperintensity signal within the displastic lesion [7] – or to 
morphological characteristics specific to small FCD – depth 
from the outer cortical surface and local curvature of the 
cortical surface [8]. 
 
2.2.1. Extraction of cortical surfaces 
In each hemisphere, the inner and outer-cortical surfaces 
were computed using the CLASP (Constrained Laplacian 
Anatomical Segmentation using Proximities) algorithm 
[13].  The inner-cortical surface was extracted by inflating a 
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sphere polygon model to the boundary between GM and 
WM.  The outer-cortical surface was obtained by expanding 
the inner-cortical surface to match the boundary between 
GM and cerebrospinal fluid (CSF).  These two surfaces are 
formed of 81920 corresponding vertices. 
 
2.2.2. Cortical thickness 
The cortical thickness was measured using the t-link method 
which is the distance between corresponding vertices [14]. 
 
2.2.3. Blurring of the WM/GM interface 
The blurred WM/GM interface was modeled by applying a 
gradient operator on the MR image.  The gradient 
magnitude was then interpolated at each vertex of the inner 
cortical surface to obtain the gradient surface map. 
 
2.2.4. Hyperintense signal 
To model hyperintensity of the lesion with respect to 
healthy cortex, we constructed three equidistant intra-
cortical surfaces by placing three uniformly spaced vertices 
between linked vertices of inner and outer cortical surfaces. 

The intensity of the underlying MR image was then 
interpolated at each vertex of the intra cortical surfaces.  
The intensity feature was modeled by the mean intensity of 
the three corresponding vertices of the intra-cortical 
surfaces. 
 
2.2.5. Morphometric features 
We previously demonstrated that small FCD lesions were 
located at the bottom of a deep sulcus [8].  To include this 
morphometric information into our model we measured the 
depth and the curvature of the inner cortical surface. 

The depth was defined as the shortest distance between 
each vertex of the WM surface and the boundary of the 
brain mask obtained with the brain extraction tool (BET) 
[12]. 

The curvature was calculated at each vertex using area-
minimizing flows to define a deviation from the surface to a 
sphere [15]. 
 
2.3. Vertex-based analysis 
 
In the normal brain, feature values vary depending on the 
anatomical location.  To take into account these regional 
variations, we proposed to use a vertex-based analysis 
(VBA) of the features by applying vertex-wise comparison 
between a group of healthy controls and a given patient.  
VBA included the following steps (Figure 1): 1) blurring of 
the features using a 5 mm FWHM Gaussian surface kernel 
[16]; 2) registration of the surface features to a template 
[15]; 3) computation of the mean and standard deviation 
(SD) at each vertex within the group of healthy controls; 4) 
deviation from normal is obtained using vertex-wise z-score 
transform for each patient with respect to the healthy 
controls’ mean and SD. 

We computed the VBA on cortical thickness, gradient, 
intensity and depth maps. 

Finally, six features were selected to feed the classifier: 
VBA on cortical thickness, gradient and intensity maps to 
model the visual characteristics of the lesions; curvature and 
depth maps, and VBA on depth map to model the 
morphometric properties of the small FCD. 
 
2.4. Neural network design 
 
For automatic FCD classification, we chose to use four layer 
feed forward neural networks with following number of 
neurons in each layer: (6–4–4–1); tan-sigmoid function was 
used at each neuron and the output node resulted in a 
number between 0 and 1 representing the probability of 
being lesional. 
 
2.4.1. Learning database 
Lesions were manually segmented on 3D MRI by trained 
raters and interpolated at each vertex of the cortical 
surfaces.  However, since the small FCD lesions are 
difficult to distinguish on T1-MRI, the user made use of 
other image sequences when available such as T2, proton 
density (PD) and fluid-attenuated inversion recovery 
(FLAIR).  The spatial extent of the lesions being difficult to 
define [17], the labels were considered as silver standard. 
 
2.4.2. Neural network training 
To avoid over fitting, we used cross-validation method to 
optimize the nets.  From all patients, we obtained a database 
constituted of about 2.8·106 non-lesional and 1841 lesional 
instances in which we randomly picked 200 vertices (80 
lesional, 120 non-lesional) to construct the training set and 
200 different vertices (80 lesional, 120 non-lesional) for the 
validation set.  The neural network was optimized on the 
training set until the error on validation set started 
increasing.  To avoid poorly performing nets, we used a 
bagging approach: we created 200 nets and kept only the 
best 100 (i.e. having the lowest validation error).  The 
proportion of lesional instances in the training and 
validation sets and the ratio of discarded nets were ad hoc 
choices obtained from experiments.  The final output of the 
networks bagging was the average of the 100 nets. 
 
2.5. Threshold of the lesional probability map 
 
The lesional probability maps obtained from the classifier 
were binarized by thresholding them at the best trade-off 
between detection rate and amount of false positives (FP). 
 
2.6. Cluster analysis 
 
The cortical surfaces are constituted of triangle meshes, 
each vertex being surrounded by 6 neighbours.  Therefore, 
the cluster size was defined as the number of 6-connected 
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vertices.  Since manual labels don’t provide the exact extent 
of FCD, vertices belonging to a cluster connected to the 
label were considered true positives. 
 

3. EXPERIMENT AND RESULTS 
 
3.1. Subjects 
 
We studied 41 consecutive patients with FCD.  The volume 
of the lesions ranged from 128 to 94620 mm3 (mean ± SD = 
7731 ± 14891 mm3). 

Using an entropy index based on their size and 
visibility on routine clinical MRI examination [8], 19 
patients had a lesion defined as small and therefore were 
included in the study (mean age = 24.9 ± 10.9).  Their mean 
volume was 1380 ± 808 mm3 (range: 128 – 3093 mm3), 
17/19 (89%) had been overlooked on routine clinical MRI 
examination.  The extent of the manual labels on the cortical 
surface was 96 ± 66 vertices (range: 14 – 236). 

We used 45 healthy controls (mean age = 27.3 ± 7.8) to 
construct the VBA models. 
 

 
Figure 1.  Generation of the VBA maps.  (A) Processing steps for 
the healthy controls to create feature mean and SD maps.  (B) The 
feature of a single patient is z-scored with respect to the mean and 
SD maps obtained at step A. 

 
3.2. Results 
 
We found the best trade-off between detection rate and 
amount of FP using a threshold value of 0.93 as illustrated 
in Figure 2. 

Using this threshold, the classifier correctly identified 
the lesion in 17/19 (89%) patients.  The size of the lesional 
cluster was 35.2 ± 45.6 vertices (range: 2 – 149).  The 
lesional cluster was the largest in 13/17 (76%) or among the 
largest two in 15/17 (88%) detected cases.  Summary of 

cluster analysis is presented in Table 1.  An example of the 
automatic detection is shown in Figure 3. 

On average, 6.1 ± 5.8 FP clusters were found in 16/19 
(84%) patients and their size was 4.8 ± 6.9 vertices (range: 1 
– 43).  They were located in the frontal lobe (34%), central 
area (21%), temporal lobe (19%), insula (19%) and parieto-
occipital areas (7%).  Although more FP clusters were 
ipsilateral (55%) than contralateral (45%) to the lesion, 
ipsilateral FP clusters were smaller than contralateral ones 
(ipsi: 3.2 ± 4.4 (range 1 – 26); contra: 6.6 ± 8.8 (range 1 – 
43) vertices). 

Within healthy controls, the classifier created 2.5 ± 1.8 
FP clusters in 25/45 (55%) individuals.  The average size of 
the largest FP cluster was 5.5 ± 5.6 vertices (range: 1 – 26). 
 

 
Figure 2.  Detection rate and amount of FP vertices (y-axis) 
plotted against the lesional probability threshold.  Values on y-axis 
are normalized with respect to that obtained at a threshold of 0.93. 

Table 1.  Size (in vertices) of manual labels, automatic lesional 
cluster and largest false positive (FP) cluster in all patients. 

Patient Label Lesion FP
01 142 149 43
02 139 130 5
03 101 93 0
04 22 85 35
05 120 45 6
06 236 44 13
07 93 29 26
08 68 22 13
09 145 17 4
10 66 15 10
11 57 12 19
12 221 8 0
13 28 7 16
14 145 6 1
15 38 4 0
16 51 2 29
17 141 2 11
18 14 0 13
19 14 0 4
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4. DISCUSSION 
 
The purpose of this study was to develop an automatic 
method for small FCD detection, a challenging and 
clinically valuable task that has not been addressed 
previously.  We included features derived from visual 
observations and from morphometric characteristics specific 
to the small lesions.  To increase the sensitivity of our 
model, we introduced for the first time the concept of 
vertex-based analysis that allowed us to compute vertex-
wise deviation from a group of healthy controls.  The 
features fed a neural networks bagging for decision making. 

The efficiency of our approach is demonstrated by the 
fact that 17/19 (89%) small lesions were identified.  In 
13/17 (76%) patients the lesional cluster was the largest.  
However, although the size of the false positive clusters was 
similar in patients and healthy controls, the classifier 
revealed some unusually large non-lesional clusters in some 
patients that may be due to the presence of extra-lesional 
anomalies, as we previously suggested in a voxel-based 
study of FCD [6]. 

This new surface-based analysis may become a useful 
clinical tool to assist in the detection of subtle FCD lesions 
that are frequently overlooked by conventional means of 
analysis. 
 

 
Figure 3.  Result of lesion detection in patient 03 and close up on 
the flattened surface with overlaid vertices.  Red: Overlap of 
manual label and automatic detection.  Yellow: manual label only.  
Blue: automatic detection only.  Blue vertices were considered true 
positives. 
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